On time-varying collaboration networks
نویسندگان
چکیده
The patterns of scientific collaboration have been frequently investigated in terms of complex networks without reference to time evolution. In the present work, we derive collaborative networks (from the arXiv repository) parameterized along time. By defining the concept of affine group, we identify several interesting trends in scientific collaboration, including the fact that the average size of the affine groups grows exponentially, while the number of authors increases as a power law. We were therefore able to identify, through extrapolation, the possible date when a single affine group is expected to emerge. Characteristic collaboration patterns were identified for each researcher, and their analysis revealed that larger affine groups tend to be less stable.
منابع مشابه
FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملThe role of joint collaboration, family perspectives and support networks for students with visual impairment
Abstract Background and Aim: Cooperation and participation for the progress and success of students with visual impairment has different dimensions and is of particular importance. Joint collaboration is an agreement and process of working together to achieve a mutual goal. Every learner is strongly influenced by the social context in which he lives. This study aimed to investigate joint co...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملOptimal design of cross docking supply chain networks with time-varying uncertain demands
This paper proposes an integrated network design model for a post-distribution cross-docking strategy, comprising multi product production facilities with shared production resources, capacitated cross docks with setup cost and customer zones with time windows constraints. The model is dynamic in terms of time-varying uncertain demands, whereas uncertainty is expressed with scenario approach an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Informetrics
دوره 7 شماره
صفحات -
تاریخ انتشار 2013